faculty

From Waste to Biodiesel

Dr. Richard Parnas
Dr. Richard Parnas pumps biodiesel.

Dr. Richard Parnas’s UConn spinoff company, REA Resource Recovery Systems, broke ground in March on a first-in-the-world, FOG-to-Biodiesel production plant at the John Oliver Wastewater Treatment Facility in Danbury, CT. The City of Danbury contracted with Veollia North America to perform a 70 million dollar plant upgrade, and the REA FOG-to-Biodiesel system is included in the overall project.

The REA system makes use of a licensed UConn patent for a novel biodiesel reactor developed by Parnas and colleagues several years ago. REA sponsors work at UConn to continue development efforts on several aspects of the process including novel methods of sulfur reduction using protein/polymer conjugate gel adsorbents.

Dr. Parnas retired in 2020 after 19 years as a Professor of Chemical and Biomolecular Engineering and faculty member of the Institute of Materials Science (IMS) Polymer Program.

IMS Polymer Program Members Inducted into UConn NAI Chapter

NAI Members and Inductees
NAI UConn Chapter members and inductees (Dr. Alexandru Asandei is 3rd from left, Dr. Richard Parnas is 4th from left).

IMS Polymer Program faculty members, Dr. Alexandru Asandei and Dr. Richard Parnas, were inducted into the UConn Chapter of the National Association of Inventors (NAI) in December 2019. The UConn NAI chapter was established in 2017 as the first Connecticut chapter of the national organization which was formed in 2010. The goal of NAI is to recognize and encourage academic inventors, enhance the visibility of academic technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society.

Dr. Richard Parnas — whose research pursuits include biofuels production and separations, renewable polymers and composites, and interface engineering — holds a patent for a novel membrane that can be used to make biodiesel production more profitable by aiding the conversion of glycerol to 1,3 propanediol, a valuable platform chemical.

In 2018, Dr. Parnas and Trumbull, CT-based REA Resource Recovery Systems partnered with UConn and the Greater New Haven Water Pollution Control Authority (GNHWPCA) to place a pilot-scale demonstration system at the East Shore Water Pollution Abatement Facility in New Haven to convert brown grease to biodiesel fuel. The type of biodiesel fuel produced through this partnership, called Brown FOG (fats, oils, grease) can be used for power generation, including to power vehicles.

In May of 2019, U.S. Congresswoman Rosa DeLauro (CT-03) and former New Haven Mayor Toni Harp visited the joint UCONN/GNHWPCA/REA project at the East Shore facility to celebrate the successful performance of the demonstration system and to kick off the effort to place a full-scale commercial system at several wastewater treatment plants in the state. Dr. Parnas has since partnered with the city of Danbury on a project to create a biodiesel production facility at that city’s water treatment plant.

Dr. Alexandru Asandei’s research interests include controlled radical polymerization, block copolymers, fluoropolymers, catalysis, biodegradable polymers, and organometallic chemistry. He holds several patents related to his research in polymer science and has served as an editorial board member for the Journal of Polymer Science: Part A: Polymer Chemistry since 2009. Dr. Asandei has served as co-organizer of the American Chemical Society (ACS) Workshop on Fluoropolymers in 2016, 2018, 2020.

In 2015, Dr. Asandei completed a month-long visiting professorship at Pôle Chimie Balard in Montpelier, France. Asandei was selected for the Chaire TOTAL program which includes a visiting professor/researcher component, an International School on Sustainable Chemistry and Energy initiative, and a scholarship program. As part of the program, Asandei presented four invited lectures. While in France, Professor Asandei also made invited presentations at the University of Toulouse and the University of Grenoble.  Dr. Asandei has been called upon to present his research at numerous conferences, universities, and industry organizations.

UConn, UMass Lowell, Georgia Tech to Collaborate with Industry on 3D Printing Research Supported by NSF

Multi-material micro-lattice polymeric structures fabricated using 3D printing
Multi-material micro-lattice polymeric structures fabricated using 3D printing

UConn, the University of Massachusetts Lowell (UMass Lowell), and Georgia Institute of Technology (Georgia Tech) announced a collaboration to establish SHAP3D, a National Science Foundation (NSF) Industry-University Cooperative Research Center (IUCRC), to address emerging challenges of additive manufacturing, also commonly referred to as 3D printing.

IUCRCs bridge the gap between early academic research and commercial readiness, supporting use-inspired research leading to new knowledge, technological capabilities and downstream commercial applications of these technologies.

“This Center will address the grand challenges that prevent the entire 3D printing field from moving forward,” says Joey Mead, Distinguished University Professor and David and Frances Pernick Nanotechnology Professor in the Department of Plastics Engineering at UMass Lowell. Mead serves as the center director of the Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D).  Read the full UConn Today Story.

Luyi Sun Awarded Spring 2016 Scholarship Facilitation Fund Award

By Rhonda Ward

Dr. Luyi Sun
Dr. Luyi Sun

Dr. Luyi Sun is the recipient of a Spring 2016 Scholarship Facilitation Fund Award from the Office of the Vice President. for Research for Publication in Nature Communications, a Premium Open-access Journal for Maximum Impact. The Office of the Vice President for Research provides financial support up to $2,000 to faculty across all disciplines, on a competitive basis, to promote, support, and enhance the research, scholarship and creative endeavors of faculty at UConn. The Scholarship Facilitation Fund (SFF) is designed to assist faculty in the initiation, completion, or advancement of research projects, scholarly activities, creative works, or interdisciplinary initiatives that are critical to advancing the faculty member’s scholarship and/or creative works.

Polymer Program Researchers Kelly Burke and Anson Ma Receive CT Regenerative Medicine Grant

By: Kelly A. Salzo

Dr. Kelly Burke
Kelly Burke (Peter Morenus/UConn Photo)

The CT Regenerative Medicine Research Fund Advisory Committee has awarded Dr. Kelly A. Burke (IMS/CBE) and Co-Investigator Anson W. K. Ma (IMS/CBE) a seed grant titled “Human intestine tissue model by 3D printing”. The grant will provide $200,000 for the research endeavor involving chemically modified silk proteins to be used for 3D printing, which will subsequently form stable hydrodels. These materials will be printed into intestine-like crypt structures and will incorporate cells from human intestine to improve understanding on how the geometry of the system alters the function of the cells. Dr. Burke is hopeful that “the data generated will not only advance our efforts in 3D printing soft materials, but will also enhance understanding of how cells interact and undergo repair processes in cultures with geometries that are more representative of the human intestine.” The applications of this research will be important to the study of intestine tissue models, which may be used to investigate disease progression and to develop therapeutics.

Anson Ma
Anson Ma

Dr. Kelly A. Burke received her Ph.D. in Macromolecular Science and Engineering from Case Western Reserve University in 2010. In 2014, she joined UConn as an assistant professor in the Chemical and Biomolecular Engineering Department and is a member of the IMS Polymer Program. Her research interests include synthesis and structure-property relationships of multifunctional polymeric materials, stimuli responsive polymers and networks, natural and synthetic biomaterials, and the design and application of polymeric systems to modulate inflammation and promote healing.

Dr. Anson W. K. received his Ph.D. in chemical engineering from the University of Cambridge in 2009. He joined UConn in 2011 as an assistant professor in the Chemical and Biomolecular Engineering Department and the IMS Polymer Program. As Principal Investigator for the Complex Fluids Laboratory, his research centers on understanding the complex flow behavior (rheology) and processing of various complex fluids including foams, emulsions, nanoparticle suspensions, and biological fluids.

IMS Researcher Anson Ma Receives 2015 Metzner Early Career Award

By: Kelly A. Salzo

Anson Ma
Assistant Professor, Anson Ma

Anson W. K. Ma (IMS/CBE), Assistant Professor in the Department of Chemical and Biomolecular Engineering, will receive the 2015 Arthur B. Metzner Early Career Award. This distinguished award, named after rheology pioneer Arthur B. Metzner, is distributed annually by the Society of Rheology to a young researcher “who has distinguished him/herself in rheological research, rheological practice, or service to rheology.” Dr. Ma will deliver a plenary lecture at the upcoming 87th Society of Rheology Annual Meeting in Baltimore, where he will receive a plaque and a $7,500 honorarium.

Anson W. K. Ma received his Ph.D. in Chemical Engineering from the University of Cambridge in 2009. He joined UConn in 2011 as a member of both the IMS Polymer Program and the Chemical Engineering Program. As Principal Investigator of the Complex Fluids Laboratory, his research focuses on understanding the complex flow behavior (rheology) and processing of various complex fluids including foams, emulsions, nanoparticle suspensions, and biological fluids. His lab is developing new techniques to improve the reliability and push the existing resolution limit of inkjet and 3D printing technology. Dr. Ma’s research on 3D printing has recently been featured on the front page of the Chronicle newspaper and Channel 8 News. In 2012, Dr. Ma received TA Instrument’s Distinguished Young Rheologist Award, which recognizes product innovation and research of new materials and applications that expand the field of rheology. The following year he received a prestigious NSF CAREER Award for his research on exploiting the size and shape of particles to improve the stability of emulsions typically found in agricultural, pharmaceutical, and personal care products. More recently, Dr. Ma is leading a major effort to establish a center of excellence for additive manufacturing of soft materials at UConn. The mission is to accelerate technology transfers to the industry and to provide an important training ground for future workforce in advanced manufacturing.

Douglas Adamson Joins TRI Board of Directors

By: Kelly A. Salzo

Associate Professor Douglas Adamson
Associate Professor Douglas Adamson

Dr. Douglas Adamson, (IMS/CHEM) Associate Professor in the Chemistry Department, has just been appointed to the board of directors of TRI/Princeton. Dr. Adamson joins a team dedicated to TRI’s mission of promoting the advancement of science and the enhancement of innovation, while pursuing potential contributions to society. The board of director’s diverse scientific disciplines allow for an interdisciplinary approach to surface science, materials science, optical measurement, and fluid/pore interaction. Doug becomes the only academic member of the board, with other members being senior scientists from companies such as DuPont, Johnson & Johnson, and Procter and Gamble.

TRI/Princeton is divided into a variety of laboratories and centers dedicated to serving industry, government, and academia. In addition to research, TRI’s Professional Education Program offers a variety of conferences, workshops and courses to provide its members with the tools to accommodate industry’s ever-changing needs. As their website explains, “We remain vigilant in seeking new opportunities and discoveries that will sustain the Institute into the future while remaining true to our principle of inspiring, educating and connecting through science.”

Rajeswari Kasi is New Program Director for IMS Polymer Program

Kasi_Jan 2015Rajeswari M. Kasi has been appointed Program Director of the IMS Polymer Program, succeeding Douglas Adamson who served in the position from 2011 to now.

Prof. Kasi is Associate Professor of Chemistry with an appointment in IMS. She was a 2008 recipient of the NSF CAREER award and has published extensively in journals including the Journal of Physical Chemistry, the Journal of Applied Polymer Science, and the Journal of the American Chemical Society.

UConn Scientists Featured in C&EN for Graphene Foam Research

Dr. Douglas Adamson
Associate Professor Douglas Adamson

The Polymer Program of the Institute of Materials Science was recently mentioned in Chemical & Engineering News (C&EN), a weekly magazine published by the American Chemical Society, for research concerning graphene foam materials. The article highlights the work of polymer chemist Dr. Douglas H. Adamson (IMS/CHEM), polymer physicist Dr. Andrey Dobrynin (IMS/PHYS), and graduate student Steven J Woltornist (IMS/CHEM), and their revolutionary approach to creating new materials based on the strong attraction of pristine (not oxidized) graphene to high-energy oil and water interfaces. In the past, graphene’s applications have been severely limited due to its insolubility in water and other common organic solvents. To fix this problem, researchers had either relied on chemically altered graphene, which is expensive and ultimately has inferior properties, or extensive mechanical treatments that led to tearing the graphene sheets apart. Instead of viewing graphene’s insolubility as a limitation, the team exploited it by using it to stabilize the high-energy interfaces found in water in oil emulsions. Overlapping pristine graphene sheets at the water/oil interface lead to a local thermodynamic minimum, resulting in stable water in oil emulsions with the water droplets lined with thin layers of graphene. Using a monomer with dissolved initiator as the oil phase, leads to the formation of polymer in the continuous phase, after gentle heating. When the water is removed, a rigid foam remains, which is strong, conductive, and light-weight. These foams and can be used as building materials, ultracapacitor electrodes, conductive catalyst supports, and filters.

Andrey Dobrynin

Dr. Douglas Adamson joined UConn in August 2008 as an Associate Professor in the Polymer Program and received his Ph.D. from the University of Southern California in 1991. His research focuses on polymer synthesis for use in self-assembly as well as using graphene and other two-dimensional sheet like materials for composites.

Dr. Andrey Dobrynin joined UConn in 2001, earned his Ph.D. from the Moscow Institute of Physics and Technology in 1991 and is a professor in the Polymer Program. His research focuses on computational approaches to polymeric materials and polymer based nanocomposites.

Steven J Woltornist joined UConn in January 2012 as a teaching assistant for general chemistry, while pursuing a Ph.D. in polymer chemistry. In May 2013, he joined the Adamson research group. His research specializes in the discovery and development of graphene-based materials.