research

Anson Ma Named UTC Professor in Engineering Innovation

Anson Ma
Dr. Anson Ma

Anson Ma from Polymer Program at IMS, with joint appointment in the Department of Chemical and Bimolecular Engineering, has been named the United Technologies Corporation (UTC) Professor in Engineering Innovation, effective 23 August 2022. This professorship has been established to recognize the exceptional achievements of young faculty who exemplify excellence in the areas of research productivity and impact, teaching contributions, and service contributions and are at the very top of their area of research.

Ma’s research group focuses on rheology and 3D printing. He currently serves as the UConn Site Director of the National Science Foundation (NSF) SHAP3D Center for Additive Manufacturing. He has received a number of awards, including Distinguished Young Rheologist Award from TA Instruments, NSF CAREER award, Arthur B. Metzner Early Career award from the Society of Rheology, 3M Non-Tenured Faculty Award, Early Career Award from the American Association of University Professors (AAUP)-UConn Chapter, UConn Polymer Program Director’s Award for Faculty Excellence, and U.S. Air Force Summer Faculty Fellowship.

Richard Parnas on FOG, Biofuels, and Wastewater Management

Professor Emeritus of Chemical and Biomolecular Engineering, Richard Parnas, has been working on solutions to the oily waste we humans produce on a daily basis.  He has been on a journey to convert that waste into usable energy.  This quest has led to the patent of proprietary technology and the formation of REA Resources Recovery Services, a company he co-founded.  Along with his partners in the company and in partnership with UConn, Dr. Parnas set about to convert FOG (Fat, Oil, Grease) into biodiesel for the benefit of municipalities in the state.

In 2019, REA contracted with the City of Danbury to build a FOG to biodiesel processing facility at the city’s wastewater treatment plant.  That project has entered the construction phase and Parnas, REA, and UConn are now looking forward to the day the facility converts its first oily waste into usable biodiesel.  IMS News reached out to Dr. Parnas about his research, the Danbury project, and the future of wastewater management.

Richard Parnas
Dr. Richard Parnas

You have been researching and developing methods to convert FOG (Fat, Oil, Grease) into biodiesel fuel since 2006.  When did you first become interested in biofuels and what about biodiesel, in particular, led you down your current path?

I’ve been interested in biofuels, and green processing and green materials in general, for many years before coming to UConn. One of the important motivations for joining UConn was to participate in the development of the green economy. An undergraduate helped get me started working on biodiesel in the summer of 2007 by simply requesting my help to set up a biodiesel synthesis reaction in a fume hood.

When you became Director of the Biofuel Consortium here at UConn, you moved the bar from six gallons of biofuel produced over the course of a year to over 50 gallons continual production daily less than three years later.  When did you realize the scale at which you might be able to convert FOG into biodiesel?  What were the obstacles you faced and how were they overcome?

We used the yellow grease from UConn cafeterias to make biodiesel at that time, and the scale of operations was determined by the yellow grease production rate from the cafeterias. As a Chemical Engineer, my goal is always to maximize the use of available raw materials, and waste as small a fraction of that raw material as possible. Shortly after we started the Biofuel Consortium, we polled the various food service establishments at UConn to determine the yellow grease availability, and found it to be over 100 gallons per week. We then designed, built and installed a 50 gallon batch system, and produced 2 or 3 of the 50 gallon batches each week.

There were a number of obstacles. Production at that scale is not a typical academic activity so we faced skepticism from the facilities folks that ran the fuel depot for the buses. They asked if our fuel would be any good and how we would prove it to them, so we had to set up testing capability. Our testing was developed and run by Prof. James Stuart, an analytical chemist. Prof. Stuart and I received a grant of over $600,000 dollars to set up a biodiesel fuel quality testing facility in the Center for Environmental Science and Engineering (CESE) to test our biodiesel and the biodiesel produced by private companies. We also faced skepticism from the UConn administration since we were operating at a much larger scale than is typical. Safety concerns are important when conducting such operations with students who are just learning how to handle chemicals.

REA Resource Recovery Systems, a company which you co-founded and worked in collaboration with UConn to patent exclusive technology, has entered Phase 4 of itsREA Logo planned development of a 5000 square foot facility in Danbury that will turn FOG into biofuel.  How important is wastewater management for municipalities and what will be the benefits for the City of Danbury once the facility is online.

I joined my two partners, Al Barbarotta and Eric Metz, to found REA at the end of 2017. The UConn patents were already in place for a piece of core technology called a counterflow multi-phase reactor that plays a key role in both the chemical conversion and in the product purification. Prof. Nicholas Leadbeatter from Chemistry is a co-inventor with me on that reactor, along with two undergraduate students. Beginning in 2015, I started working with a very low grade feedstock called brown grease, which is much harder to process than the yellow grease we had been working with earlier. Every single wastewater treatment plant in the world has a brown grease management and disposal problem, and every municipality has a wastewater management problem. In much of the world, wastewater management is required by law and heavily regulated to ensure that effluent meets standards for discharge into rivers and oceans.

Here in CT, the brown grease problem was handled by DEEP many years ago by mandating that certain wastewater treatment plants in the state become FOG receiving stations. Brown grease is the component of FOG that causes all the problems. These FOG receiving stations were given a small set of choices as to how to dispose of the brown grease they received, such as by landfilling or incineration. All the choices cost money and vectored pollution into the air, the land, or the water.

Danbury was mandated to become a FOG receiving facility several years ago, and undertook a general plant upgrade project to build a FOG receiving facility and then dispose of the FOG using biodigesters. When that disposal pathway became too difficult due to high cost they sought alternatives. REA was ready at that time to provide the alternative of converting the brown grease into a salable product, biodiesel. This solution provides two benefits to Danbury, an environmentally excellent disposal method and a source of revenue. REA estimates that the revenue will offset the cost of the project in Danbury in about 7 years, and that the payback period will be significantly shorter in larger facilities.

It has been 15 years since you undertook this journey of making biodiesel a viable alternative energy source.  How does it feel to see your years of work coming to fruition with the Danbury project?

It feels terrifying because we have not yet started up the Danbury plant. When we successfully start Danbury, the relief and satisfaction will be enormous. Until then, for the next few months, everyone associated with the project is working very hard to finish the installation.

Since retiring in 2020, you appear to be just as active in your pursuit of science.  What continues to drive you and is there anything you miss now that you have retired?

I am driven by the desire to see this biodiesel project through to completion and by the desire to play some small role in mitigating the unfolding climate catastrophe. When I started at UConn I was surprised that the academic definition of project completion is a final report. As an engineer, that did not seem to be enough because most reports are ignored and forgotten. Sometimes I miss the teaching aspect of working at UConn, but I think I most miss the camaraderie of my colleagues, with whom I have much less time now than I used to.

Using Machine Learning to Identify Promising Polymer Membranes

Ying Li
Dr. Ying Li

Polymer membranes are commonly used in industry for the separation of gases like CO2 from flue gas and methane from natural gas. Over several decades, researchers have been studying various polymers to improve their permeability and usefulness but have hit a roadblock when it comes to testing them all in a quick and efficient manner. In a recent publication in Science Advances, UConn Assistant Professor of Mechanical Engineering Ying Li,  University of Connecticut (UConn) Centennial Professor of Chemical and Biomolecular Engineering Jeff McCutcheon; UConn researchers Lei Tao, Jinlong He; and researcher Jason Yang from California Institute of Technology have found an innovative new way to use machine learning (ML) to test and discover new polymer membranes.

Through investigation, the authors remark on the currently Edisonian approach to membrane design: “In the decades of technological development in the membrane science field, design of new membrane materials has been, and remains, a largely trial-and-error process, guided by experience and intuition. Current approaches generally involve tuning chemical groups to increase affinity and solubility towards the desired gas or incorporating greater free volume to increase overall diffusivity.”

As an alternative method to tedious experiments, computational models can be used to predict membrane performance. However, they are either too expensive, or low accuracy caused by the simplified approximations. To address this shortcoming, the team developed an accurate way to identify new, high-performing polymers using ML methods.

Using multiple fingerprint features and fixed chemical descriptors, the team used deep learning on a small dataset to link membrane chemistry to membrane performance. Traditionally, RF (Random Forest) models are known to work best on small data sets, but the team found that deep neural networks worked well because of the use of ensembling, which combines prediction from multiple models.

Jeffrey McCutcheon
Dr. Jeffrey McCutcheon

Further, the team found that the ML model was capable of discovering thousands of polymers with performance predicted to exceed the Robeson upper bound, which is a standard used to define the permeability and selectivity trade-off for polymer gas-separation membranes. In addition, discovered polymers with ultrahigh permeability would allow for industry to perform gas separations with higher throughput, while maintaining a high level of selectivity.

The researchers summarize, “Ultimately, we provide the membrane design community with many novel high-performance polymer candidates and key chemical features to consider when designing their molecular structures. Lessons from the workflow demonstrated in this study can likely serve as a guide for other materials discovery and design tasks, such as polymer membranes for desalination and water treatment, high-temperature fuel cells, and catalysis. With the continual improvement of ML techniques and an increase in computing power, we expect that ML-assisted design frameworks will only gain popularity and deliver increasingly substantial results in materials discovery for a wide range of applications.”

This project is funded in whole or in part with funds from the the Air Force Office of Scientific Research through the Air Force’s Young Investigator Research Program (FA9550-20-1-0183; program manager: M.-J. Pan); National Science Foundation (CMMI-1934829 and CAREER Award CMMI-2046751); 3M’s Non-Tenured Faculty Award; National Alliance for Water Innovation (NAWI), under Funding Opportunity Announcement Number DE-FOA-0001905 of U.S. Department of Energy.

2022 Polymer Poster Session

2022 Polymer Program Poster Session
IMS Polymer Program students display posters during 2022 Poster Session.

After two years of restrictions due to the COVID virus, the Polymer Program held its first in-person poster session since 2019. The event kicked off a 2-day open house for graduate student recruitment and also broke the long streak of virtual events.

Poster boards were dusted off and set up in the new Gant Complex Atrium, now called the “Light Court”, with a new collection of posters. Faculty and students expressed much gratification for the escape from the cyber world and return to the tradition of in-person discussions. Despite the masks, the smiles could be seen and the joy of the event could be felt by all.

A few faculty and students passing through the area felt the magnetic pull of the science talk and enthusiastically joined the fun. The event included 15 posters from polymer research laboratories, more than two dozen students, five visiting prospective students, and faculty from four departments. While the times change and technology evolves, it will be difficult to replace the glory of a traditional poster session.

2022 Polymer Program Poster Session
Students speaking with Polymer Program Director Kelly Burke during 2022 Poster Session.

IMS Faculty Members Named 2022 American Chemical Society PMSE Young Investigators

Kelly Burke-Sophie Wang
Drs. Kelly Burke (l) and Xueju “Sophie” Wang

Each year, the American Chemical Society’s Division of Polymeric Materials: Science and Engineering (PMSE) honors young investigators through its PMSE Young Investigator Symposium which provides an opportunity to highlight the accomplishments of its honorees.  Honorees are chosen from early-career emerging leaders who have made significant contributions in their respective fields within polymer materials science and engineering. The invited honorees speak at a two-day “PMSE Young Investigator” symposium, held during the Fall National Meeting of the American Chemical Society.

IMS faculty members Kelly Burke and Xueju “Sophie” Wang have been named PMSE Young Investigator Honorees for 2022 and will speak at the two-day “PMSE Young Investigator” symposium, to be held during the Fall National Meeting of the American Chemical Society.

Kelly Burke joined the UConn faculty in 2014 as Assistant Professor of Chemical and Biomolecular Engineering with an appointment in the Institute of Materials Science.  She has been recognized for her accomplishments, including the National Institute of Health Ruth L. Kirschstein National Research Service Award and the prestigious NSF CAREER Award. She was appointed Director of the IMS Polymer Program in September 2021.

Sophie Wang joined the UConn faculty in 2020 as an Assistant Professor in the Materials Science and Engineering Department with an appointment in the Institute of Materials Science.  She has consistently distinguished her research with numerous publications and as the recipient of the ASME Orr Early Career Award, and the NSF CAREER Award.  She is an associate faculty member of the IMS Polymer Program.

IMS congratulates both Kelly and Sophie on this accomplishment.

Polymer Program Alumnus Published in Royal Society of Chemistry

Ajinkya Deshmukh
Dr. Ajinkya Deshmukh

Ajinkya Deshmukh, IMS Polymer Program alumnus and graduate assistant in polymer science, is first author in a research paper recently published in Royal Society of Chemistry.

From the Abstract: Flexible polymers that can withstand temperature and electric field extremes are critical to advanced electrical and electronic systems. High thermal stability of polymers is generally achieved through the introduction of highly conjugated aromatic structures, that lower the bandgap and thus diminish the electric field endurance. Here, we demonstrate a class of flexible all-organic polyolefins by a strategic modular structure design to eliminate the impact of conjugation on bandgap. The one such designed polymer exhibits superior operational temperature and Tg of 244 °C without compromising the bandgap (∼5 eV), exhibiting significantly suppressed electrical conductivity when subjected to a high electric field. It reveals the highest ever recorded energy density of 6.5 J cc−1 at 200 °C, a 2× improvement over the best reported flexible dielectric polymers or polymer composites. The uncovered polymer design strategy introduces a platform for high performance dielectric development for extreme thermal and electric field conditions.

Read the full publication

Dr. Ying Li Receives NSF CAREER Award

Dr. Ying Li is one of eight UConn faculty members, and three IMS faculty members, to receive a National Science Foundation Career CAREER Award in 2021.  Li  will develop a machine learning model to better understand the properties of a promising sustainable material.To learn more about the award  Visit UConn Today.

From Waste to Biodiesel

Dr. Richard Parnas
Dr. Richard Parnas pumps biodiesel.

Dr. Richard Parnas’s UConn spinoff company, REA Resource Recovery Systems, broke ground in March on a first-in-the-world, FOG-to-Biodiesel production plant at the John Oliver Wastewater Treatment Facility in Danbury, CT. The City of Danbury contracted with Veollia North America to perform a 70 million dollar plant upgrade, and the REA FOG-to-Biodiesel system is included in the overall project.

The REA system makes use of a licensed UConn patent for a novel biodiesel reactor developed by Parnas and colleagues several years ago. REA sponsors work at UConn to continue development efforts on several aspects of the process including novel methods of sulfur reduction using protein/polymer conjugate gel adsorbents.

Dr. Parnas retired in 2020 after 19 years as a Professor of Chemical and Biomolecular Engineering and faculty member of the Institute of Materials Science (IMS) Polymer Program.

UConn, UMass Lowell, Georgia Tech to Collaborate with Industry on 3D Printing Research Supported by NSF

Multi-material micro-lattice polymeric structures fabricated using 3D printing
Multi-material micro-lattice polymeric structures fabricated using 3D printing

UConn, the University of Massachusetts Lowell (UMass Lowell), and Georgia Institute of Technology (Georgia Tech) announced a collaboration to establish SHAP3D, a National Science Foundation (NSF) Industry-University Cooperative Research Center (IUCRC), to address emerging challenges of additive manufacturing, also commonly referred to as 3D printing.

IUCRCs bridge the gap between early academic research and commercial readiness, supporting use-inspired research leading to new knowledge, technological capabilities and downstream commercial applications of these technologies.

“This Center will address the grand challenges that prevent the entire 3D printing field from moving forward,” says Joey Mead, Distinguished University Professor and David and Frances Pernick Nanotechnology Professor in the Department of Plastics Engineering at UMass Lowell. Mead serves as the center director of the Center for Science of Heterogeneous Additive Printing of 3D Materials (SHAP3D).  Read the full UConn Today Story.

Luyi Sun Awarded Spring 2016 Scholarship Facilitation Fund Award

By Rhonda Ward

Dr. Luyi Sun
Dr. Luyi Sun

Dr. Luyi Sun is the recipient of a Spring 2016 Scholarship Facilitation Fund Award from the Office of the Vice President. for Research for Publication in Nature Communications, a Premium Open-access Journal for Maximum Impact. The Office of the Vice President for Research provides financial support up to $2,000 to faculty across all disciplines, on a competitive basis, to promote, support, and enhance the research, scholarship and creative endeavors of faculty at UConn. The Scholarship Facilitation Fund (SFF) is designed to assist faculty in the initiation, completion, or advancement of research projects, scholarly activities, creative works, or interdisciplinary initiatives that are critical to advancing the faculty member’s scholarship and/or creative works.