UConn’s Future Climate Venture Studio has created a fellowship program designed to provide tangible experiences for students interested in learning in start-ups, marketing, commercialization, venture development, and research around climate change. Materials Science PhD. student, Amy Pollock, is one of three UConn graduate students to receive the fellowship. Fellows were selected for their excellent writing skills, science, technical, or business background, interest in the entrepreneurial process, interest in addressing climate change, and their ability to work independently and handle confidential material. The program partners each student with 2 start-up companies that need advice and/or assistance within a specific discipline. This enables the companies to have access to scientist working in their field while the students gain insight regarding the many challenges of creating and maintaining a startup company. The program is one more example of UConn’s support of entrepreneurship for both students as well as faculty.
The polymer program honored Dr. Jaime A. Gómez as the 2023 Distinguished Alumni.
Dr. Gomez completed his Polymer Ph.D. at UConn in 1989 before beginning his career as a scientist and organizational leader. He has had a successful career including both research and leadership roles. On Friday, September 8, he opened the fall 2023 Polymer Seminar series with his talk titled, “Unexpected Challenges in the Life of a Polymer Scientist”. The talk included stories of research, product development, and exploring various real world challenges during his 30-year career as a polymer scientist. The theme of his presentation is that scientists build a foundation of knowledge and skills during their academic career, but face new and unexplored fields in the industrial setting.
Dr. Gómez received a BS in Chemical Engineering from Universidad Pontificia Bolivariana in Colombia, an MS in Organic Chemistry from Wichita State University, Kansas, and a Ph.D. in Polymer Science from the University of Connecticut. In addition to his scientific education, Dr. Gómez received an MBA from New York University (Stern School of Business) with concentration in International Business, Finance & Marketing. Dr. Gómez has 30-years of industry experience that includes plastics, specialty chemicals, and materials handling—industries where he has conducted basic and applied research, evaluation and acquisitions of technologies and companies, international business development, and corporate strategic planning. Gómez is currently President & CEO of Equitech, a company dedicated to the in-line measurement of chemical concentration, and color and film thickness for a myriad of industries.
Dr. Gómez has been an active member and leader of the Society of Plastics Engineers (SPE) for the past 35 years. He joined the Society ofPlastics Engineers in 1987 while pursuing his Polymer Ph.D. here at the UConn, serving as the SPE’s Student Chapter President for two terms. He also served as a member of SPE’s Extrusion Division Board of Directors for six years and helped establish the Next Generation Advisory Board (NGAB). Dr. Gómez has been a member of SPE’s Board of Directors since 2013 and has served as SPE’s Secretary, Treasurer, VP Marketing & Communications, VP Events, and President-Elect. He received SPE’s President’s Cup in 2014 and the Excellence in Mentoring Award in 2017. He also invented and directed The Plastics Race™, an event that promotes networking and knowledge exchange between SPE members. Gómez was named President of SPE for the 2020-2021 term.
Polymer rheology expert, Montgomery (Monty) Shaw, was celebrated at the Society of Plastic Engineers (SPE) Annual Technical Conference and Exhibition (ANTEC) in Denver Colorado this past March. Over the past 30+ years, Dr. Shaw made vital contributions to polymer science and engineering that were shared in over 200 seminars and courses taught at the University of Connecticut. His books: Introduction to Polymer Rheology; Electrorheology; Water Treeing in Solid Dielectrics; and Introduction to Polymer Viscoelasticity have received citing by thousands of scientists and have been used in curriculums throughout the world. These books have been valued for both content and the method of communicating the ideas. His lifelong contributions to polymer science and engineering were celebrated at the daylong event. The symposium, organized by UConn’s Prof. Luyi Sun and Prof. Emertus Robert Weiss, included 13 speakers from both industry and academia.
Dr. Shaw’s began his career at Union Carbide Corp. before joining the University of Connecticut’s Polymer Program as a Professor of Chemical Engineering in 1978. He also gained experience with two year-long sabbaticals at DuPont and Sandia National Laboratories. Dr. Shaw states that, “if you change your environment, you learn new things”. This variety of experience helped him see various aspects of the field and recognize the importance of practical applications in academic research. His peers boast about the deep level of investigation Dr. Shaw made in all the details of rheology. This level of understanding sheds light on every step of the process, leaving nothing unseen.
During his more than 30 years as a UConn faculty member, Dr. Shaw was the major advisor of 44 students, helping develop the next generation of polymer scientists. Although he retired in 2009, Dr. Shaw continues to train and assist the students and faculty of the UConn IMS Polymer Program. He also served in leadership roles for the Society of Rheology. His positive attitude and love for science has made Dr. Shaw an integral leader of the Polymer community at the University of Connecticut and throughout the world.
Details of the symposium can be found at this LINK.
The IMS Polymer Program, IMS Materials Science Program, and the Materials Science and Engineering Department held their first in-person poster session since 2019 in the brand new building, Science 1. The COVID pandemic put this traditional event on hold for 3 years. Forty two graduate students from twenty research labs presented posters. Students welcomed the opportunity to share their research and ideas with other students, faculty, and guests from industry. The session, coordinated alongside the IMS Industrial Affiliates Program (IAP) 2023 Annual Meeting, brought over 100industry partners to meet the students and faculty participants. The new building with its open layout added energy to the event. IMS thanks participants for a truly successful day.
Polymer Ph.D. student, Xiangyi Xi was the 2023 recipient of the Stephanie H. Shaw Scholarship. She made some major contributions in developing biosensors for the Papadimitrakopoulos research lab. She helped implement a multi-potential step pulsing test technique which lead to increased sensitivity and reduced power consumption of implantable glucose sensors. This lead to a patent currently in application. More recently, she has helped develop of an enzymatic cascade sensor. In addition to her research, Xiangyi has continued to mentor the next wave of scientists, including 10 undergraduates over the past 5 years. Xiangyi is pictured with Polymer Director, Dr. Kelly Burke.
Polymer Program Ph.D. student, Hanyi Duan, was the 2023 recipient of the Samuel J. Huang Graduate Student Research Award. Hanyi was recognized for his success in research, journal articles, and strong collaborative nature in the research laboratory. As a researcher, Hanyi has taken a leading role in developing new synthetic methodology to asymmetric polymer grafted metal nanoparticles. This research was the foundation of 6 publications as lead author. Hanyi is pictured with Polymer Program Director, Dr. Kelly Burke, and his major advisor, Dr. Jie He.
Anson Ma from Polymer Program at IMS, with joint appointment in the Department of Chemical and Bimolecular Engineering, has been named the United Technologies Corporation (UTC) Professor in Engineering Innovation, effective 23 August 2022. This professorship has been established to recognize the exceptional achievements of young faculty who exemplify excellence in the areas of research productivity and impact, teaching contributions, and service contributions and are at the very top of their area of research.
Ma’s research group focuses on rheology and 3D printing. He currently serves as the UConn Site Director of the National Science Foundation (NSF) SHAP3D Center for Additive Manufacturing. He has received a number of awards, including Distinguished Young Rheologist Award from TA Instruments, NSF CAREER award, Arthur B. Metzner Early Career award from the Society of Rheology, 3M Non-Tenured Faculty Award, Early Career Award from the American Association of University Professors (AAUP)-UConn Chapter, UConn Polymer Program Director’s Award for Faculty Excellence, and U.S. Air Force Summer Faculty Fellowship.
Professor Emeritus of Chemical and Biomolecular Engineering, Richard Parnas, has been working on solutions to the oily waste we humans produce on a daily basis. He has been on a journey to convert that waste into usable energy. This quest has led to the patent of proprietary technology and the formation of REA Resources Recovery Services, a company he co-founded. Along with his partners in the company and in partnership with UConn, Dr. Parnas set about to convert FOG (Fat, Oil, Grease) into biodiesel for the benefit of municipalities in the state.
In 2019, REA contracted with the City of Danbury to build a FOG to biodiesel processing facility at the city’s wastewater treatment plant. That project has entered the construction phase and Parnas, REA, and UConn are now looking forward to the day the facility converts its first oily waste into usable biodiesel. IMS News reached out to Dr. Parnas about his research, the Danbury project, and the future of wastewater management.
You have been researching and developing methods to convert FOG (Fat, Oil, Grease) into biodiesel fuel since 2006. When did you first become interested in biofuels and what about biodiesel, in particular, led you down your current path?
I’ve been interested in biofuels, and green processing and green materials in general, for many years before coming to UConn. One of the important motivations for joining UConn was to participate in the development of the green economy. An undergraduate helped get me started working on biodiesel in the summer of 2007 by simply requesting my help to set up a biodiesel synthesis reaction in a fume hood.
When you became Director of the Biofuel Consortium here at UConn, you moved the bar from six gallons of biofuel produced over the course of a year to over 50 gallons continual production daily less than three years later. When did you realize the scale at which you might be able to convert FOG into biodiesel? What were the obstacles you faced and how were they overcome?
We used the yellow grease from UConn cafeterias to make biodiesel at that time, and the scale of operations was determined by the yellow grease production rate from the cafeterias. As a Chemical Engineer, my goal is always to maximize the use of available raw materials, and waste as small a fraction of that raw material as possible. Shortly after we started the Biofuel Consortium, we polled the various food service establishments at UConn to determine the yellow grease availability, and found it to be over 100 gallons per week. We then designed, built and installed a 50 gallon batch system, and produced 2 or 3 of the 50 gallon batches each week.
There were a number of obstacles. Production at that scale is not a typical academic activity so we faced skepticism from the facilities folks that ran the fuel depot for the buses. They asked if our fuel would be any good and how we would prove it to them, so we had to set up testing capability. Our testing was developed and run by Prof. James Stuart, an analytical chemist. Prof. Stuart and I received a grant of over $600,000 dollars to set up a biodiesel fuel quality testing facility in the Center for Environmental Science and Engineering (CESE) to test our biodiesel and the biodiesel produced by private companies. We also faced skepticism from the UConn administration since we were operating at a much larger scale than is typical. Safety concerns are important when conducting such operations with students who are just learning how to handle chemicals.
REA Resource Recovery Systems, a company which you co-founded and worked in collaboration with UConn to patent exclusive technology, has entered Phase 4 of its planned development of a 5000 square foot facility in Danbury that will turn FOG into biofuel. How important is wastewater management for municipalities and what will be the benefits for the City of Danbury once the facility is online.
I joined my two partners, Al Barbarotta and Eric Metz, to found REA at the end of 2017. The UConn patents were already in place for a piece of core technology called a counterflow multi-phase reactor that plays a key role in both the chemical conversion and in the product purification. Prof. Nicholas Leadbeatter from Chemistry is a co-inventor with me on that reactor, along with two undergraduate students. Beginning in 2015, I started working with a very low grade feedstock called brown grease, which is much harder to process than the yellow grease we had been working with earlier. Every single wastewater treatment plant in the world has a brown grease management and disposal problem, and every municipality has a wastewater management problem. In much of the world, wastewater management is required by law and heavily regulated to ensure that effluent meets standards for discharge into rivers and oceans.
Here in CT, the brown grease problem was handled by DEEP many years ago by mandating that certain wastewater treatment plants in the state become FOG receiving stations. Brown grease is the component of FOG that causes all the problems. These FOG receiving stations were given a small set of choices as to how to dispose of the brown grease they received, such as by landfilling or incineration. All the choices cost money and vectored pollution into the air, the land, or the water.
Danbury was mandated to become a FOG receiving facility several years ago, and undertook a general plant upgrade project to build a FOG receiving facility and then dispose of the FOG using biodigesters. When that disposal pathway became too difficult due to high cost they sought alternatives. REA was ready at that time to provide the alternative of converting the brown grease into a salable product, biodiesel. This solution provides two benefits to Danbury, an environmentally excellent disposal method and a source of revenue. REA estimates that the revenue will offset the cost of the project in Danbury in about 7 years, and that the payback period will be significantly shorter in larger facilities.
It has been 15 years since you undertook this journey of making biodiesel a viable alternative energy source. How does it feel to see your years of work coming to fruition with the Danbury project?
It feels terrifying because we have not yet started up the Danbury plant. When we successfully start Danbury, the relief and satisfaction will be enormous. Until then, for the next few months, everyone associated with the project is working very hard to finish the installation.
Since retiring in 2020, you appear to be just as active in your pursuit of science. What continues to drive you and is there anything you miss now that you have retired?
I am driven by the desire to see this biodiesel project through to completion and by the desire to play some small role in mitigating the unfolding climate catastrophe. When I started at UConn I was surprised that the academic definition of project completion is a final report. As an engineer, that did not seem to be enough because most reports are ignored and forgotten. Sometimes I miss the teaching aspect of working at UConn, but I think I most miss the camaraderie of my colleagues, with whom I have much less time now than I used to.
SHAP3D held their eighth bi-annual Industrial Advisory Board Meeting on May 25 – May 26, 2022, at the Innovation Partnership Building (IPB) | UConn Tech Park.
“It is wonderful to reunite with the SHAP3D family and interact with new center members for the first time in person since they have joined after the pandemic began,” says Prof. Anson Ma, UConn Site Director of the SHAP3D center.
SHAP3D is a collaboration between the University of Massachusetts Lowell, University of Connecticut and Georgia Institute of Technology to create a National Science Foundation I/UCRC focused on 3D printing. The mission of the SHAP3D Center is to perform pre-competitive research providing the fundamental knowledge for 3D printing heterogeneous products that integrate multiple engineering materials with complex 3D structures and diverse functionality. The Center’s diverse membership comprises material developers, 3D printer manufacturers, 3D printing end users, and federal agencies with a stake in the growth of this emerging manufacturing platform.
The meeting was attended by more than 55 faculty members, students, and representatives from private companies, and government agencies. At this meeting, project teams currently funded by the SHAP3D center shared their progress and latest findings. Other highlights of the meeting included rapid fire presentations from members and two invited talks by Professor Timothy Long from the Arizona State University and Professor Matthew Becker from Duke University. UConn SHAP3D site, Proof of Concept Center (POCC), and Pratt & Whitney Additive Manufacturing Center (PW AMC) were all featured in the IPB lab tour. During the reception sponsored by UConn School of Engineering, students who are involved in SHAP3D projects also had the valuable opportunity to present their posters and network with the advisory board members.
Polymer membranes are commonly used in industry for the separation of gases like CO2 from flue gas and methane from natural gas. Over several decades, researchers have been studying various polymers to improve their permeability and usefulness but have hit a roadblock when it comes to testing them all in a quick and efficient manner. In a recent publication in Science Advances, UConn Assistant Professor of Mechanical Engineering Ying Li, University of Connecticut (UConn) Centennial Professor of Chemical and Biomolecular Engineering Jeff McCutcheon; UConn researchers Lei Tao, Jinlong He; and researcher Jason Yang from California Institute of Technology have found an innovative new way to use machine learning (ML) to test and discover new polymer membranes.
Through investigation, the authors remark on the currently Edisonian approach to membrane design: “In the decades of technological development in the membrane science field, design of new membrane materials has been, and remains, a largely trial-and-error process, guided by experience and intuition. Current approaches generally involve tuning chemical groups to increase affinity and solubility towards the desired gas or incorporating greater free volume to increase overall diffusivity.”
As an alternative method to tedious experiments, computational models can be used to predict membrane performance. However, they are either too expensive, or low accuracy caused by the simplified approximations. To address this shortcoming, the team developed an accurate way to identify new, high-performing polymers using ML methods.
Using multiple fingerprint features and fixed chemical descriptors, the team used deep learning on a small dataset to link membrane chemistry to membrane performance. Traditionally, RF (Random Forest) models are known to work best on small data sets, but the team found that deep neural networks worked well because of the use of ensembling, which combines prediction from multiple models.
Further, the team found that the ML model was capable of discovering thousands of polymers with performance predicted to exceed the Robeson upper bound, which is a standard used to define the permeability and selectivity trade-off for polymer gas-separation membranes. In addition, discovered polymers with ultrahigh permeability would allow for industry to perform gas separations with higher throughput, while maintaining a high level of selectivity.
The researchers summarize, “Ultimately, we provide the membrane design community with many novel high-performance polymer candidates and key chemical features to consider when designing their molecular structures. Lessons from the workflow demonstrated in this study can likely serve as a guide for other materials discovery and design tasks, such as polymer membranes for desalination and water treatment, high-temperature fuel cells, and catalysis. With the continual improvement of ML techniques and an increase in computing power, we expect that ML-assisted design frameworks will only gain popularity and deliver increasingly substantial results in materials discovery for a wide range of applications.”
This project is funded in whole or in part with funds from the the Air Force Office of Scientific Research through the Air Force’s Young Investigator Research Program (FA9550-20-1-0183; program manager: M.-J. Pan); National Science Foundation (CMMI-1934829 and CAREER Award CMMI-2046751); 3M’s Non-Tenured Faculty Award; National Alliance for Water Innovation (NAWI), under Funding Opportunity Announcement Number DE-FOA-0001905 of U.S. Department of Energy.